

PQ

A transactional queue system for PostgreSQL written in Python.

[image: PQ does the job!]

It allows you to push and pop items in and out of a queue in various
ways and also provides two scheduling options: delayed processing and
prioritization.

The system uses a single table that holds all jobs across queues; the
specifics are easy to customize.

The system currently supports only the psycopg2 [https://pypi.python.org/pypi/psycopg2] database driver - or
psycopg2cffi [https://pypi.python.org/pypi/psycopg2cffi] for PyPy.

The basic queue implementation is similar to Ryan Smith’s
queue_classic [https://github.com/ryandotsmith/queue_classic]
library written in Ruby, but uses advisory locks [http://www.postgresql.org/docs/current/static/explicit-locking.html#ADVISORY-LOCKS]
for concurrency control.

In terms of performance, the implementation clock in at about 1,000
operations per second. Using the PyPy [http://pypy.org/]
interpreter, this scales linearly with the number of cores available.

Getting started

All functionality is encapsulated in a single class PQ.

class PQ(conn=None, pool=None, table='queue', debug=False)

Example usage:

from psycopg2 import connect
from pq import PQ

conn = connect('dbname=example user=postgres')
pq = PQ(conn)

For multi-threaded operation, use a connection pool such as
psycopg2.pool.ThreadedConnectionPool.

You probably want to make sure your database is created with the
utf-8 encoding.

To create and configure the queue table, call the create() method.

pq.create()

The table name defaults to 'queue'. To use a different name, pass
it as a string value as the table argument for the PQ class
(illustrated above).

Queues

The pq object exposes queues through Python’s dictionary
interface:

queue = pq['apples']

The queue object provides get and put methods as explained
below, and in addition, it also works as a context manager where it
manages a transaction:

with queue as cursor:
 ...

The statements inside the context manager are either committed as a
transaction or rejected, atomically. This is useful when a queue is
used to manage jobs because it allows you to retrieve a job from the
queue, perform a job and write a result, with transactional
semantics.

Methods

Use the put(data) method to insert an item into the queue. It
takes a JSON-compatible object such as a Python dictionary:

queue.put({'kind': 'Cox'})
queue.put({'kind': 'Arthur Turner'})
queue.put({'kind': 'Golden Delicious'})

Items are pulled out of the queue using get(block=True). The
default behavior is to block until an item is available with a default
timeout of one second after which a value of None is returned.

def eat(kind):
 print 'umm, %s apples taste good.' % kind

job = queue.get()
eat(**job.data)

The job object provides additional metadata in addition to the
data attribute as illustrated by the string representation:

>>> job
<pq.Job id=77709 size=1 enqueued_at="2014-02-21T16:22:06Z" schedule_at=None>

The get operation is also available through iteration:

for job in queue:
 if job is None:
 break

 eat(**job.data)

The iterator blocks if no item is available. Again, there is a default
timeout of one second, after which the iterator yields a value of
None.

An application can then choose to break out of the loop, or wait again
for an item to be ready.

for job in queue:
 if job is not None:
 eat(**job.data)

 # This is an infinite loop!

Scheduling

Items can be scheduled such that they’re not pulled until a later
time:

queue.put({'kind': 'Cox'}, '5m')

In this example, the item is ready for work five minutes later. The
method also accepts datetime and timedelta objects.

Priority

If some items are more important than others, a time expectation can
be expressed:

queue.put({'kind': 'Cox'}, expected_at='5m')

This tells the queue processor to give priority to this item over an
item expected at a later time, and conversely, to prefer an item with
an earlier expected time.

The scheduling and priority options can be combined:

queue.put({'kind': 'Cox'}, '1h', '2h')

This item won’t be pulled out until after one hour, and even then,
it’s only processed subject to it’s priority of two hours.

Pickles

If a queue name is provided as <name>/pickle
(e.g. 'jobs/pickle'), items are automatically pickled and
unpickled using Python’s built-in cPickle module:

queue = pq['apples/pickle']

class Apple(object):
 def __init__(self, kind):
 self.kind = kind

queue.put(Apple('Cox'))

The old pickle protocol 0 is used to ensure the pickled data is
encoded as ascii which should be compatible with any database
encoding.

Tasks

pq comes with a higher level API that helps to manage tasks.

from pq.tasks import PQ

pq = PQ(...)

queue = pq['default']

@queue.task(schedule_at='1h')
def eat(kind):
 print 'umm, %s apples taste good.' % kind

eat('Cox')

queue.work()

tasks’s jobs can optionally be re-scheduled on failure:

@queue.task(schedule_at='1h', max_retries=2, retry_in='10s')
def eat(kind):
 # ...

Time expectations can be overriden at task call:

eat('Cox', _expected_at='2m', _schedule_at='1m')

Thread-safety

All objects are thread-safe as long as a connection pool is provided
where each thread receives its own database connection.

Index

Changes

1.6.1 (2018-11-14)

	Fix queue class factory pattern.

1.6 (2018-11-12)

	Fix compatibility with NamedTupleCursor.

	Fix duplicate column name issue.

	Add option to specify own queue class.

1.5 (2017-04-18)

	Fixed Python 2 compatibility.

1.4 (2016-03-25)

	Added worker class and handler helper decorator.
[jeanphix]

1.3 (2015-05-11)

	Python 3 compatibility.
[migurski]

	Fix time zone issue.

1.2 (2014-10-21)

Improvements:

	Fixed concurrency issue where a large number of locks would be held
as a queue grows in size.

	Fixed a database connection resource issue.

1.1 (2014-02-27)

Features:

	A queue is now also a context manager, providing transactional
semantics.

	A queues now returns task objects which provide metadata and allows
reading and writing task data.

Improvements:

	The same connection pool can now be used with different queues.

Bugs:

	The Literal string wrapper did not work correctly with psycopg2.

	The transaction manager now correctly returns connections to the
pool.

1.0 (2013-11-20)

	Initial public release.

 _static/file.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 PQ

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

